INHIBITORS OF THROMBOXANE SYNTHASE IN HUMAN PLATELETS

Ulf DICZFALUSY and Sven HAMMARSTRÖM

Department of Chemistry, Karolinska Institutet, S-10401 Stockholm 60, Sweden

Received 8 August 1977

1. Introduction

Thromboxanes A are a new group of compounds with extreme potency to induce platelet aggregation and smooth muscle contractions. They are derived from prostaglandin endoperoxides and have a half-life of only 30–40 s in aqueous solution (pH 7.4, 37°C). Thromboxanes B, the products of the spontaneous degradation, are biologically inactive [1]. Two enzymes are required to convert polyunsaturated fatty acids to thromboxanes: prostaglandin endoperoxide synthase (cyclooxygenase) and thromboxane synthase (fig.1). These enzymes from human platelets were recently solubilized and chromatographically resolved [2]. In the present report the ability of various compounds to inhibit thromboxane synthase from human platelets is described.

2. Materials and methods

[1- 14 C]Prostaglandin H₂ (1 Ci/mol) was prepared from [1- 14 C]arachidonic acid (Radiochemical Centre, 55 Ci/mol) [3]. The incubation mixture contained 5 mM L-tryptophan, a cofactor for the conversion of prostaglandin G₂ to prostaglandin H₂ [4]. Phtalazinol was kindly provided by Dr T. Shimamoto. 9α , 11α -Azo-15(S)-hydroxy-prosta-5(cis), 13(trans)-dienoic acid was a generous gift from Dr E. J. Corey. 9α , 11α -Epoxymethano-15(S)-hydroxy-prosta-5(cis), 13(trans)-dienoic acid, 9α , 11α -methanoepoxy-15(S)-hydroxy-

Abbreviation: ETA, 5,8,11,14-eicosatetraynoic acid This work was presented at the 11th FEBS Meeting, Copenhagen, August 14-19, 1977

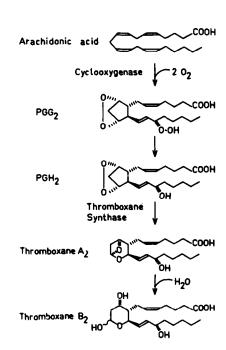


Fig.1. Enzymes required to convert arachidonic acid to thromboxane B₂.

prosta-5(cis), 13(trans)-dienoic acid, prostaglandins and thromboxane B₂ were kindly provided by the Upjohn Company. 5,8,11,14-Eicosatetrayonic acid, 2-isopropyl-3-nicotinyl-indole and sodium p-benzyl-4-[1-oxo-2-(4-chlorobenzyl)-3-phenyl propyl] phenyl phosphonate were generously provided by Hoffman La Roche, Labaz and Nelson Research, respectively. Imidazole was purchased from Sigma.

2.1. Platelet microsomes

Washed platelets were prepared from human blood collected with 7.5% (v/v) of 77 mM sodium EDTA

[3]. The platelets from 400 ml blood were resuspended in 10 mM Tris—HCl, pH 7.4 to vol. 10 ml and sonicated at 0°C using a Branson sonifier model S-125 (setting no 4); six 5 s treatments separated by 1 min intervals for cooling. The fraction sedimenting between $1500 \times g \times 15$ min and $100\ 000 \times g \times 60$ min was resuspended in 50 mM Tris buffer, pH 7.4, to vol. 20 ml. Platelet disruption and subsequent manipulations were performed at 0-4°C.

2.2. Enzyme assay

Resuspended microsomes, $100 \mu l$, (0.65 mg)protein/ml) were preincubated with various presumed inhibitors at 24°C. After 15 s. 2.5 µg [1-14C]prostaglandin H2 was added and the incubation was continued for another 60 s at 24°C. The reaction was stopped by adding 0.3 ml diethyl ether/methanol/ 0.2 M citric acid (30:4:1, v/v/v) precooled to -70°C . After rapid mixing and phase separation the lower phase was frozen. The ether phase was aspirated. mixed with 10 µg unlabeled thromboxane B₂. methylated with etheral diazomethane and chromatographed on silica gel G thin-layer chromatography with 2% methanol in diethyl ether as solvent system. The thin-layer chromatograms were scanned for radioactivity on a Berthold Dünnschichtsscanner II and sprayed with phosphomolybdic acid to detect reference compounds. Appropriate zones were then scraped off into scintillation vials and counted in a Packard Tri Carb 3385 liquid scintillation counter, after the addition of 10 ml Permablend® (4.4 g/l toluene/ethanol, 4:1 v/v) to each vial. Percent conversion to thromboxane B2 was obtained by relating the radioactivity which co-chromatographed with the internal reference thromboxane B2 to the total radioactivity recovered from the plate.

3. Results and discussion

Radiochromatograms of products from prostaglandin H_2 incubations with native and boiled platelet microsomes are shown in fig.2. The positions of unlabeled thromboxane B_2 (A), prostaglandin E_2 (B) prostaglandin $F_{2\alpha}$ (C) used as internal (A) and external (B and C) reference compounds are also shown. The radioactive material co-chromatographing with unlabeled thromboxane B_2 was analyzed by gas—

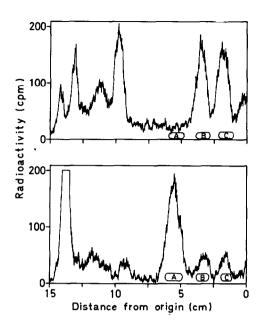


Fig. 2. Thin-layer radiochromatogram of products isolated after incubations of $[1^{-14}C]$ prostaglandin H_2 with native (lower panel) or boiled human platelet microsomes (upper panel). Positions of internal (A) and external (B, C) reference compounds are shown with striped areas. (A, thromboxane B_2 ; B, prostaglandin E_2 ; C, prostaglandin $F_{2\alpha}$).

liquid chromatography—mass spectrometry and identified as thromboxane B_2 [2].

Recently a number of stable analogues of the prostaglandin endoperoxides have been synthesized [5-7]. Three of these analogues were tested in the present investigation. One, $9\alpha,11\alpha$ -azo-15(S)-hydroxyprosta-5(cis), 13(trans)-dienoic acid (analogue I), was a potent inhibitor of thromboxane synthase with an ID_{50} of approximately 2 μ M. Another relatively potent inhibitor was 9α,11α-epoxymethano-15(S)hydroxy-prosta 5(cis), 13(trans)-dienoic acid (analogue II) which gave an ID_{50} 2 × 10⁻⁵ M. The third analogue, $9\alpha,11\alpha$ -methanoepoxy-15(S)-hydroxy-prosta-5(cis), 13(trans)-dienoic acid (analogue III) was not effective in inhibiting thromboxane synthase (figs. 3-4). The relative potency of these compounds as inhibitors of thromboxane synthase parallelled their binding to plateler microsomes*, suggesting that the analogues inhibit

^{*}Diczfalusy, U., Powell, W. S., Hammarström, S. and Samuelsson, B., unpublished observations

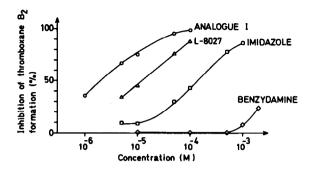


Fig. 3. Inhibition of thromboxane B_2 formation from prostaglandin H_2 as a function of inhibitor concentration.

thromboxane synthase by binding to the substrate site of this enzyme.

It was recently reported that an anti-inflammatory compound, 2-isopropyl-3-nicotinyl-indole (L-8027) selectively inhibits thromboxane A₂ synthesis [8]. This compound was tested in our system and was found to be a potent inhibitor (ID_{50} approx. 10 μ M, fig.3). Benzydamine, which was reported to inhibit thromboxane formation by horse platelet microsomes [9], was not effective in our system at concentrations below 1 mM. It is thus doubtful if this compound should be considered a specific inhibitor of thromboxane synthase. It has been reported that imidazole is a selective inhibitor of thromboxane formation [10]. Our results (fig.3) confirm that imidazole inhibits the conversion of prostaglandin H2 to thromboxane B₂. The potency of imidazole was however 10-100-times less than that of the compounds

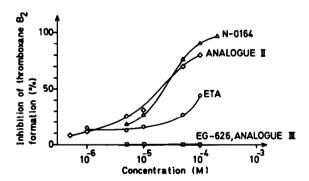


Fig. 4. Inhibition of thromboxane B_2 formation from prostaglandin H_2 as a function of inhibitor concentration.

described above (ID_{50} 1.5 \times 10⁻⁴ M). The acetylenic analogue of arachidonic acid 5.8.11.14-eicosatetravnoic acid, was not effective in inhibiting thromboxane synthesis (fig.4). Sodium p-benzyl-4-[1-oxo-2-(4-chlorobenzyl)-3-phenyl propyl] phenyl phosphonate (N-0164) has been reported to inhibit the formation of thromboxane A2-like activity from prostaglandin endoperoxides by human platelet microsomes [11] as assayed on rabbit aorta. The reported ID_{50} $(2.4 \times 10^{-5} \text{ M})$ is identical to that obtained in our system (fig.4). Phtalazinol (EG-626) did not inhibit the conversion of prostaglandin H₂ to thromboxane B₂ catalyzed by human platelet microsomes (fig.4). This agrees with a proposal that EG-626 is an antagonist of thromboxane action [12] rather than an inhibitor of thromboxane synthase.

In conclusion, four compounds were found to be good inhibitors of microsomal thromboxane synthase from human platelets. These inhibitors (analogue I, L-8027, analogue II and N-0164, decreasing order of potency) had ID_{50} values of 2–24 μ M. The endoperoxide analogues I and II have biological activities similar to those of prostaglandin G_2 and prostaglandin H_2 [13]. L-8027 and N-0164, however, appear to be promising compounds for studies on the relative biological importance of prostaglandin endoperoxides and thromboxanes in platelets and other tissues.

Acknowledgements

This work was supported by a grant from the Swedish Medical Research Council (Project 03X-217).

References

- Hamberg, M., Svensson, J. and Samuelsson, B. (1975)
 Proc. Natl. Acad. Sci. USA 72, 2994–2998.
- [2] Hammarström, S. and Falardeau, P. (1977) Proc. Natl. Acad. Sci. USA in press.
- [3] Hamberg, M., Svensson, J., Wakabayashi, T. and Samuelsson, B. (1974) Proc. Natl. Acad. Sci. USA 71, 345-349.
- [4] Miyamoto, T., Ogino, N. Yamamoto, S. and Hayaishi, O. (1976) J. Biol. Chem. 251, 2629-2636.
- [5] Corey, E. J., Shibasaki, M., Nicolaou, K. C., Malmsten, C. L. and Samuelsson, B. (1976) Tetrahedron Lett. 10, 737-740.

- [6] Corey, E. J., Nicolaou, K. C., Machida, Y., Malmsten, C. L. and Samuelsson, B. (1975) Proc. Natl. Acad. Sci. USA 72, 3355-3358.
- [7] Bundy, G. L. (1975) Tetrahedron Lett. 24, 1957-1960.
- [8] Gryglewski, R. J., Zmuda, A., Korbut, R., Krecioch, E. and Bieron, K. (1977) Nature 267, 627-628.
- [9] Bunting, S., Higgs, G. A., Moncada, S. and Vane, J. R. (1976) Brit. J. Pharmac. 58, 269P.
- [10] Needleman, P. Raz, A., Ferrendelli, J. A. and Minkes, M. (1977) Proc. Natl. Acad. Sci. USA 74, 1716-1720.
- [11] Kulkarni, P. S. and Eakins, K. E. (1976) Prostaglandins 12, 456-469.
- [12] Shimamoto, T., Takashima, Y., Kobayashi, M., Moriya, K. and Takahashi, T. (1976) Proc. Japan Acad. 52, 591-594.
- [13] Malmsten, C. (1976) Life Sci. 18, 169-176.